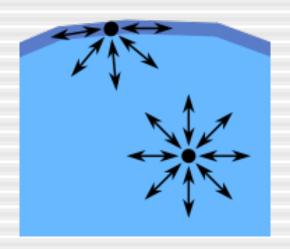


Siltech LLC 2170 Luke Edwards Road Dacula, Ga. 30019

Surface Tension Reduction of Motor Oil Utilizing Specialty Silicone Technology

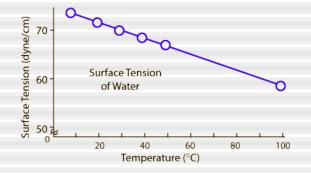

March 10, 2009

Tony O'Lenick Siltech LLC

Engine Oil Project

Surface Tension Definition

 A property of liquids arising from unbalanced molecular cohesive forces at or near the surface, as a result of which the surface tends to contract and has properties resembling those of a stretched elastic membrane.



Water Strider

Structural Requirements

- The reduction of surface tension in oils is dependent upon the ability of an amphiphilic silicone to reach the liquid surface and orient itself properly.
- Surface Tension decreases with increasing temperature.

Performance Requirements

- An effective silicone product must possess balanced solubility.
 - Sufficiently soluble to provide clarity
 - Sufficiently insoluble to migrate to the surface
- The most efficient molecules for reducing the surface tension are those that provide the lowest surface tension at the lowest concentration.

Conventional Silicone Technology

- Lower surface tension can also be achieved by utilizing conventional silicones (dimethyl silicones).
- However, conventional silicones are poorly soluble in conventional and synthetic oils....principally used as antifoamants

Novel Silicone Technology

- Siltech LLC has developed and filed patents on a series of silicone compounds that have the ability to lower surface tension of both conventional and synthetic engine oils.
- The silicone compounds are active at treat rates of less than 1% active ingredient.
- Branded as Silube® 5016 and Silube® 6016.

Novel Silicone Technology

Silube® 5016 and Silube® 6016.

INCI: Cetyl dimethicone crosspolymer

The reduction of the surface tension of motor oil will increase miles per gallon

and

Reduce the wear on the engine, resulting in increased engine life.

Silube™ Structural and Mechanistic Features

- Selected alkyl groups on the silicone polymer improves the solubility of the Silube[®] Silicones in oils.
- Very limited crosslink density
 - Lowest free energy of the oil occurs when the silicone polymer is pushed to the oil/metal interface where it surprisingly lowers surface tension.

Excellent Solubility in Engine Oils

10W-30 Synthetic Control (A)

(A) + 1% Silube[®] 5016

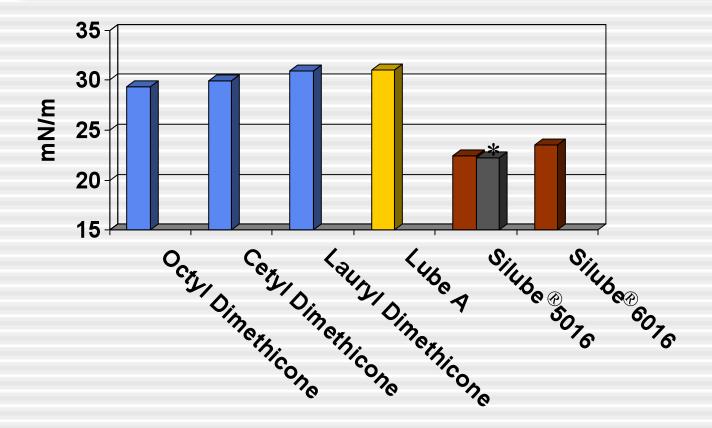
Conventional Silicones

1% in

1% in

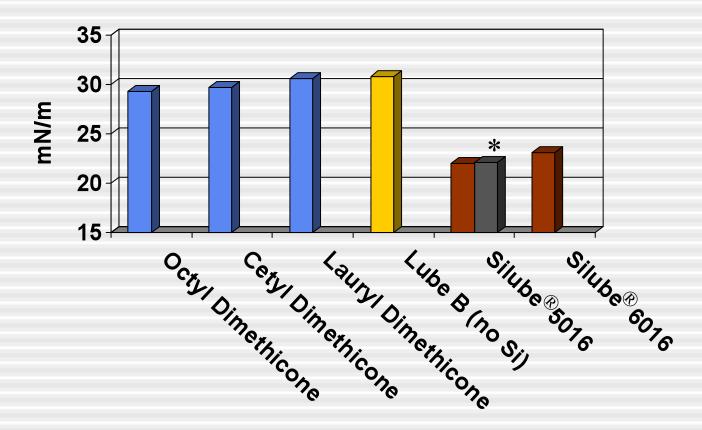
	Lube A	Lube B
	10W-30	10W-30
	Mineral Oil	Synthetic
Surface Tension:	mN/m	mN/m
Octyl dimethicone	29.3	29.3
Cetyl Dimethicone	29.9	29.7
Stearyl dimethicone	Solid	Solid
Lauryl Dimethicone	30.9	30.6
350 cSt Silicone Fluid	Insoluble	Insoluble
50 cSt silicone fluid	Insoluble	Insoluble
Control (Untreated lube)	31.0	30.8

ASTM D 7490


Silube® Silicones

	1% in	0.5% in	1% in	0.5% in
	Lube A	Lube A	Lube B	Lube B
	10W-30	10W-30	10W-30	10W-30
	Mineral Oil	Mineral Oil	Synthetic	Synthetic
Surface Tension:	mN/m	mN/m	mN/m	mN/m
Silube [®] 5016	22.5	22.2	22.0	22.2
Silube [®] 6016	23.5	NA	23.1	NA
Control (Untreated lube)	31.0	31.0	30.8	30.8

Surface Tension reductions of 24 – 29 % obtained with Silube[®] Silicones at 0.5 and 1 % treat rates


ASTM D 7490

Conventional Engine Oil

Additive Treat Rate = 1.0 % in Lube A (* = 0.5 %)

Synthetic Engine Oil

Additive Treat Rate = 1.0 % in Lube B (* = 0.5 %)

Implications to Lubrication

- Does reduced surface tension have the same effect as reduced viscosity?
 - Will a 10W-30 perform like a 5W-20 or an ISO VG 100 like an ISO VG 32 ?
- Does improved wettability/penetrability result in improved lube/lube additive performance?
- USP 5,320,761 (Pennzoil) cites Surface Tension reduction as way to improve fuel economy.
 - Employ detergents at ~ 3.0 % to maintain 20 mN/m during use.

SIL TECH Thank You

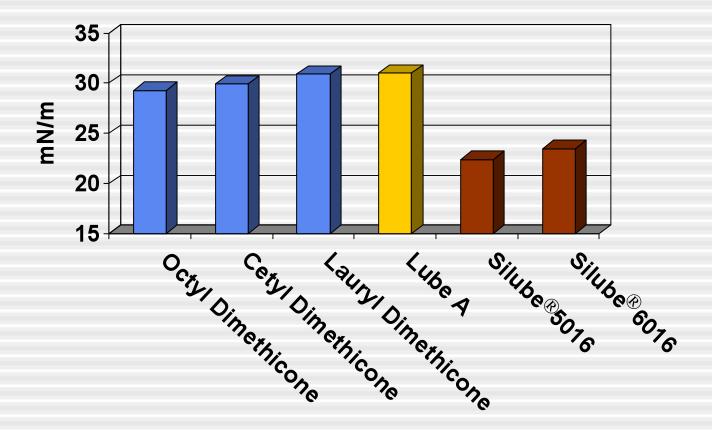
Siltech LLC

2170 Luke Edwards Road Dacula, GA 30019

www.siltechpersonalcare.com

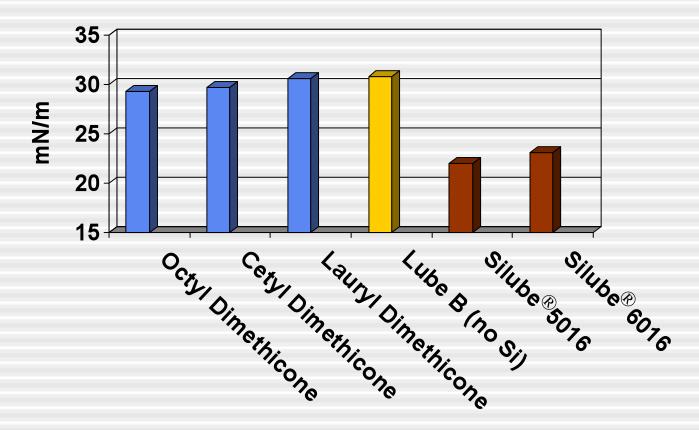
tolenick@mindspring.com

Silube® Silicones


40/ :--

	170 III	170 111
	Lube A	Lube B
	10W-30	10W-30
	Mineral Oil	Synthetic
Surface Tension:	mN/m	mN/m
Silube [®] 5016	22.5	22.0
Silube [®] 6016	23.5	23.1
Control (Untreated lube)	31.0	30.8

Surface Tension reductions of 24 – 29 % obtained with Silube[®] Silicones at 1 % treat rate


ASTM D 7490 17

Conventional Engine Oil

Additive Treat Rate = 1.0 % in Lube A

Synthetic Engine Oil

Additive Treat Rate = 1.0 % in Lube B